Sustainable Innovation in Polyolefin Elastomers: Predictive Model for Hardness, Melt Flow Index and Expansion in Cross-linked Foams
DOI:
https://doi.org/10.55965/setp.4.08.a7Keywords:
Cross-linked polyolefin foams, Polyolefin elastomers, predictive models, Expansion Ratio, Melt flow IndexAbstract
Context. This study responds to the growing demand for innovations in cross-linked polyolefin foams by developing a predictive model for cross-linked polyolefin foams, which reduces formulation times by predicting key properties, optimizing material usage and reducing waste. This contributes to more sustainable industrial production and minimizes the need for extensive experimentation, aligning with sustainable development goals.
Problem. The lack of accurate predictive models to estimate key properties in compound design makes it difficult to improve efficiency and quality, generating waste of materials and energy. How to develop an innovative and reliable predictive model that minimizes formula design times and optimizes resource use, promoting sustainable development by reducing waste and improving efficiency?
Purpose. This work seeks to establish a predictive model that optimizes the performance of polymeric materials, integrating innovation and sustainability in alignment with the UN SDGs.
Methodology. Predictive equations based on the law of mixtures were validated against experimental data to predict the properties of polyolefin compounds, as well as the change in these once the material is foamed.
Theoretical and practical Findings. The developed model accurately predicts the studied properties (
Downloads
References
Abe, S., & Yamaguchi, M. (2001). Study on the Foaming of Crosslinked Polyethylene. Journal of Applied Polymer Science, 79(12), 2146–2155. https://doi.org/10.1002/1097-4628(20010321)79:12%3C2146::AID-APP1022%3E3.0.CO;2-Q DOI: https://doi.org/10.1002/1097-4628(20010321)79:12<2146::AID-APP1022>3.0.CO;2-Q
Antunes, M. (2024). Recent Trends in Polymeric Foams and Porous Structures for Electromagnetic Interference Shielding Applications. In Polymers (Vol. 16, Issue 2). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym16020195 DOI: https://doi.org/10.3390/polym16020195
ASTM D1238-13. (2013). Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer 1. ASTM International. https://doi.org/10.1520/D1238-13 DOI: https://doi.org/10.1520/D1238-13
Banger, A., Jangid, N. K., Srivastava, A., & Srivastava, M. (2023). Polymeric Foams: Mechanisms and Properties. In ACS Symposium Series (Vol. 1439, pp. 43–61). American Chemical Society. https://doi.org/10.1021/bk-2023-1439.ch003 DOI: https://doi.org/10.1021/bk-2023-1439.ch003
Castillo-Esparza, M. M. G. C., Cuevas-Pichardo, L. J., & Montejano-García, S. (2022). Innovación en México: Patentes, Gasto en I&D y Capital humano. Scientia et PRAXIS, 2(04), 82–103. https://doi.org/10.55965/setp.2.coed.a4 DOI: https://doi.org/10.55965/setp.2.coed.a4
Castillo-Esparza, M. M. G. C., Maldonado-Guzmán, G., Mejía-Trejo, J., & Martínez-Serna, M. del C. (2024). Rendimiento Económico de las Prácticas de Ecoinnovación en Micro, Pequeñas y Medianas Empresas Manufactureras. Scientia et PRAXIS, 4(08), 1–27. https://doi.org/10.55965/setp.4.08.a1 DOI: https://doi.org/10.55965/setp.4.08.a1
Coi Rubber Products, I. (2017). COI-Durometer-Conversion-Chart. In www.coirubber.com. https://www.coirubber.com/wp-content/uploads/2017/07/COI-Durometer-Conversion-Chart.pdf
Dealy, J., & Park, H. E. (2006). Effects of pressure and gases on viscosity of molten plastics. Polymer Engineering and Science, 46(10), 1416–1424. https://doi.org/10.1002/spepro.003348
Dow Inc. (2024). Elastómeros de Poliolefina. https://www.dow.com/es-es/product-technology/pt-elastomers-rubber/pg-elastomers-polyolefin-elastomers.html
Eaves, D. (1997). The Properties of Crosslinked Foams Produced from Metallocene Polyolefins. Polymers & Polymer Composites, 5(7), 477–482. https://doi.org/10.1177/096739119700500702 DOI: https://doi.org/10.1177/147823919700500702
European Chemicals Agency. (n.d.). Search for chemicals - ECHA. Retrieved May 29, 2024, from https://echa.europa.eu/information-on-chemicals
Feijoo, J. L., & Igualada, J. (2013). Polymer Composite Foams (Patent US 2013/0203878 A1). https://doi.org/10.13140/RG.2.1.1202.6646
Gibson, R. F. (2007). PRINCIPLES OF COMPOSITE MATERIAL MECHANICS (2nd ed.). CRC Press. https://doi.org/10.1201/9781420014242 DOI: https://doi.org/10.1201/9781420014242
Gonçalves, L. F. F. F., Reis, R. L., & Fernandes, E. M. (2024). Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. In Polymers (Vol. 16, Issue 9). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/polym16091286 DOI: https://doi.org/10.3390/polym16091286
Hapco Inc. (2024). Hardness Comparison Chart. Https://Hapcoincorporated.Com/Resources/. https://hapcoincorporated.com/resources/hardness-chart/
Julias, A. (2021). Volume Fraction of Composites (B.S.ABDUR RAHMAN CRESCENT INSTITUTE OF SCIENCE & TECHNOLOGY, Ed.). https://crescent.education/wp-content/uploads/2021/03/Volume-fraction-of-composites.pdf
Justia. (2024). Patents Assigned to Finproject-S.p.A. - Justia Patents Search. https://patents.justia.com/assignee/finproject-s-p-a
Luo, Y. (2022). Improved Voigt and Reuss Formulas with the Poisson Effect. Materials, 15(16). https://doi.org/10.3390/ma15165656 DOI: https://doi.org/10.3390/ma15165656
Malkin, A. Y., & Isayev, A. I. (1995). Non-linearity in rheology - an essay of classification. Rheol Acta, 34, 27–39. https://doi.org/10.1007/BF00396052 DOI: https://doi.org/10.1007/BF00396052
Malkin, A. Y., & Isayev, A. I. (2012). Rheology: Concepts, Methods, and Applications (2nd ed.). Chemtec Publishing. https://doi.org/10.1016/C2011-0-04626-4 DOI: https://doi.org/10.1016/C2011-0-04626-4
Mejía-Mancilla, J., & Mejía-Trejo, J. (2024). Technology Acceptance Model for Smartphone Use in Higher Education. Scientia et PRAXIS, 4(07), 113–158. https://doi.org/10.55965/setp.4.07.a5 DOI: https://doi.org/10.55965/setp.4.07.a5
Morales Rivera, D. A., & Zuluaga Corrales, H. F. (2006). Estudio de propiedades térmicas y mecánicas en espumas de mezclas poliméricas entre copolímero de etileno-acetato de vinilo (EAV) y caucho natural (CN). Revista Facultad de Ingeniería, Universidad de Antioquia, 37, 82–92. DOI: https://doi.org/10.23850/22565035.787
Oliveira Salmazo, L. (2015). CINÉTICAS DE ESPUMACIÓN Y CONTROL DE LA ESTRUCTURA CELULAR EN MATERIALES BASADOS EN CAUCHO NATURAL Y POLIOLEFINAS. Universidad de Valladolid, FACULTAD DE CIENCIAS.
Park, H. E., Lim, S. T., Laun, H. M., & Dealy, J. M. (2008). Measurement of pressure coefficient of melt viscosity: Drag flow versus capillary flow. Rheologica Acta, 47(9), 1023–1038. https://doi.org/10.1007/s00397-008-0296-x DOI: https://doi.org/10.1007/s00397-008-0296-x
Ridzuan Mansor, M., Sapuan, S. M., & Zainudin, E. S. (2013). Stiffness Prediction of Hybrid Kenaf/Glass Fiber Reinforced Polypropylene Composites using Rule of Mixtures (ROM) and Rule of Hybrid Mixtures (RoHM). Journal of Polymer Materials, 30(3), 321–334. https://www.researchgate.net/publication/258441030
Rodríguez-Pérez, M. A. (2005). Crosslinked polyolefin foams: Production, structure, properties, and applications. In Advances in Polymer Science (Vol. 184, pp. 97–126). https://doi.org/10.1007/b136244 DOI: https://doi.org/10.1007/b136244
Roussel, M. D., Guy, A. R., Shaw, L. G., & Cara, J. E. (2005). The Use of Calcium Carbonate in Polyolefins Offers Significant Improvement in Productivity. https://www.tappi.org/content/enewsletters/eplace/2006/06-3rousselv1.pdf
Steffen Thorsen. (2024). Climate & Weather Averages in Leon, Guanajuato, Mexico. Time and Date AS. https://www.timeanddate.com/weather/mexico/leon/climate
TROCELLEN GmbH. (2023, August 1). Todo a saber sobre la espuma de polietileno (PE). Materiales y Tecnologías. https://trocellen.com/es/materiales-y-tecnologias/espuma/
Velasco, J. I., & Antunes, M. (2019). Polymeric Foams. In Polymeric Foams (pp. 1–5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/books978-3-03921-633-8 DOI: https://doi.org/10.3390/books978-3-03921-633-8
Wickson, E. J., & Grossman, R. F. (2008). Formulation Development. In R. F. Grossman (Ed.), Handbook of Vinyl Formulating (pp. 1–12). https://doi.org/10.1002/9780470253595 DOI: https://doi.org/10.1002/9780470253595.ch1
Wu, G., Xie, P., Yang, H., Dang, K., Xu, Y., Sain, M., Turng, L. S., & Yang, W. (2021). A review of thermoplastic polymer foams for functional applications. In Journal of Materials Science (Vol. 56, Issue 20, pp. 11579–11604). Springer. https://doi.org/10.1007/s10853-021-06034-6 DOI: https://doi.org/10.1007/s10853-021-06034-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Raúl Javier Orea-Monroy, José Fernando Guillén-Guzmán
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.