Application of ARIMA Model to Forecast Corn Prices in Mexico

Authors

  • Leo Guzmán-Anaya Profesor Investigador en el Centro Universitario de Ciencias Económico-Administrativas (CUCEA), Universidad de Guadalajara, Guadalajara, Jalisco, México https://orcid.org/0000-0002-5682-3175

DOI:

https://doi.org/10.55965/setp.4.08.a3

Keywords:

ARIMA model, price forecast, corn prices, agricultural prices, Mexico

Abstract

Corn is an essential grain in the Mexican culinary, cultural and social heritage. However, the volatility in corn prices brings uncertainty to agricultural farmers and has caused an increase in imports of the grain from other countries. The purpose of this study is to use time-series models regularly applied in finance to an agricultural commodity and forecast corn prices in Mexico. The study employs autoregressive integrated moving average (ARIMA) models to forecast prices in 2024 and 2025 using data on average rural prices of grain corn from the period 1980 to 2023 The results contribute to a theoretical discussion on employing statistical tools to reduce market uncertainty on agricultural commodities and provide empirical practical results on corn prices for decision making. The results are innovative in using the ARIMA statistical tool to analyze a specific commodity (corn) in a specific market (Mexico). The conclusions of the study suggest an upward trend in corn prices for 2024 and 2025, however, price stagnation and uncertainty is observed. Although government policies have introduced price guarantees for corn in Mexico, they only cover less than 3% of total production. Future studies should analyze price divergence by regions or states in Mexico.

Downloads

Download data is not yet available.

Author Biography

Leo Guzmán-Anaya, Profesor Investigador en el Centro Universitario de Ciencias Económico-Administrativas (CUCEA), Universidad de Guadalajara, Guadalajara, Jalisco, México

Dr. Leo Guzman-Anaya is a research professor at the University Center of Economic and Managerial Science at the University of Guadalajara. He graduated at the bachelor’s level in International Business from the University of Guadalajara, earned a master’s degree in Economics from Tokyo International University, Japan, and a Ph.D. in Economics and Management Science with a specialization in Applied Economics from the University of Guadalajara.

He is a member of the National System of Researchers (Level 1). His research interests are oriented toward International Economics, with a particular interest in inter-industry spillovers and location determinants from Japanese foreign direct investment.

During his academic career, he has participated in 9 research projects at the intra and inter-institutional level, published one book, 11 book chapters, and 17 original research articles. He has presented research results at 30 international conferences and organized 11 international seminars. Furthermore, he has been invited to undertake academic stays at Sophia University and Seijo University in Japan. Also, he has been invited and consulted on topics related to Japanese investment in Mexico by government agencies such as JICA (Japan) and the Jalisco State Congress and by research centers, including The Brookings Institution (U.S.).

References

Agbo, H.M.S. (2023). Forecasting agricultural price volatility of some export crops in Egypt using ARIMA/GARCH model. Review of Economics and Political Science, 8(2),123-133. https://doi.org/10.1108/REPS-06-2022-0035 DOI: https://doi.org/10.1108/REPS-06-2022-0035

Banco Mundial (2024). PIB, UMN a precios constantes - Mexico. Retrieved February 18, 2024, from: https://datos.bancomundial.org/indicator/NY.GDP.MKTP.KN?locations=MX

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis Forecasting and Control (5th ed.). Wiley. DOI:10.1111/jtsa.12194 DOI: https://doi.org/10.1111/jtsa.12194

Bezabih, G., Wale, M., Satheesh, N, Fanta, S. W. and Atlabachew, M. (2023). Forecasting cereal crops production using time series analysis in Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 22(2), 546-559.

https://doi.org/10.1016/j.jssas.2023.07.001 DOI: https://doi.org/10.1016/j.jssas.2023.07.001

Diario Oficial de la Federación (DOF, 2019). Plan Nacional de Desarrollo. Retrieved July 12 2024, from:

https://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019#gsc.tab=0

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427–431. https://doi.org/10.2307/2286348 DOI: https://doi.org/10.1080/01621459.1979.10482531

Food and Agriculture Organization (FAO, 2021). OECD-FAO Agricultural Outlook

-2030. OECD and Food and Agriculture Organization of the United Nations. https://doi.org/10.1787/19428846-en DOI: https://doi.org/10.1787/19428846-en

Guimond-Ramos, J.C., Borbon-Morales, C.G., & Mejia-Trejo, J. (2023). Variations in the

expenditure of Mexican households on foods with a high energy content, 2016-2020. Scientia et PRAXIS, 3(05), 1-25.

https://doi.org/10.55965/setp.3.coed1.a1 DOI: https://doi.org/10.55965/setp.3.coed1.a1

Instituto Nacional de Geografía y Estadistica (INEGI, 2024). Banco de Información Económica

Bank. Retrieved March 17, 2024, from:

https://www.inegi.org.mx/app/indicadores/?tm=0#bodydataExplorer

Jadhav, V., Chinnappa-Reddy, B. V., & Gaddi, G. M. (2017). Application of ARIMA Model for Forecasting Agricultural Prices. Journal of Agricultural Science and Technology, 19, 981-992.

http://jast.modares.ac.ir/article-23-2638-en.html

López-García, M.R., Martínez-Damián, M. A., & Arana-Coronado, J. J. (2021). Predicción del Maíz en México. Agrociencia, 55(8), 733-746.

https://doi.org/10.47163/agrociencia.v55i8.2665 DOI: https://doi.org/10.47163/agrociencia.v55i8.2665

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate Trends and Global Crop Production Since 1980. Science, 333(6042), 616-620.

DOI: 10.1126/science.1204531 DOI: https://doi.org/10.1126/science.1204531

Maiga, Y. (2024). Temporal Forecast of Maize Production in Tanzania: An Autoregressive

Integrated Moving Average Approach. Journal of Agricultural Studies, 12(2), 118-131. https://doi.org/10.5296/jas.v12i2.21679 DOI: https://doi.org/10.5296/jas.v12i2.21679

Martínez-Damián, M.A. & Brambila-Paz, J.J. (2023). Modeling of nominal vs real price

predictors applied to corn, wheat, and barley in Mexico. Revista Mexicana de Ciencias Agrícolas, 14(2), 295-301.

https://doi.org/10.29312/remexca.v14i2.2933 DOI: https://doi.org/10.29312/remexca.v14i2.2933

Morales, R. (2023, February 7). Mexico increases dependence on imported corn. El Economista. Retrieved April 11, 2024 from:

https://www.eleconomista.com.mx/empresas/Mexico-bate-record-en-importaciones-de-maiz-a-pesar-de-arancel-y-decreto-20231002-0134.html

Pardey, P. G., Alston, J. M., & Chan-Kang, C. (2013). Public Agricultural R&D over the past half-century: An emerging new world order. Agricultural Economics, 44(s1), 103-113. https://doi.org/10.1111/agec.12055 DOI: https://doi.org/10.1111/agec.12055

Secretaría de Agricultura y Desarrollo Rural (SADER, 2021). Agri-food Regions of

Mexico. Retrieved February 28, 2024, from:

https://www.gob.mx/agricultura/articulos/regiones-agroalimentarias-de-mexico?idiom=es

Seguridad Alimentaria Mexicana (SAM, 2022). Guaranteed prices program for basic food products. Retrieved March 13, 2024, from:

https://www.cmdrs.gob.mx/sites/default/files/cmdrs/sesion/2021/12/06/2682/materiales/programa-precios-garantia-2021-maiz.pdf

Sistema de Información Agroalimentaria de Consulta (SIACON, 2024). Servicio de Información Agroalimentaria y Pesquera. Retrieved February 8, 2024, from:

https://www.gob.mx/siap/documentos/siacon-ng-161430

Thistleton, W. y Sadigov, T. (2023). Practical Time Series Analysis. Coursera.

https://www.coursera.org/learn/practical-time-series-analysis

U.S. Department of Agriculture (USDA, 2023). World Agricultural Supply and Demand

Estimates. Retrieved August 8, 2024, from:

https://ipad.fas.usda.gov/cropexplorer/cropview/comm_chartview.aspx?cropid=0440000&regionid=us&nationalGraph=False&cntryid=USA&sel_year=2022&startRow=1&fctypeid=19&fcattributeid=10

United Nations (UN, 2015). Transforming our world: The 2030 agenda for sustainable

development. Retrieved August 18, 204, from: https://sustainabledevelopment.un.org/post2015/transformingourworld

Valdez-Galvez, M.J., Coronado-Gonzalez, Y.U.K. & Camarena-Gomez, B.O. (2023).

Environmental degradation and sustainability in areas with intensive agricultural practices of Sonora, Mexico. Scientia et PRAXIS, 3(05), 26-50. https://doi.org/10.55965/setp.3.coed1.a2 DOI: https://doi.org/10.55965/setp.3.coed1.a2

Yadav, S., Mishra, P., Kumari, B., Shah, I.A., Karakaya, K., Shrivastri, S., Fatih, C., Ray, S. & Khatib, A.M.G.A. (2022). Modelling and Forecasting of Maize Production in South Asian Countries. Economic Affairs, 67(04), 519-531.

DOI: 10.46852/0424-2513.4.2022.18 DOI: https://doi.org/10.46852/0424-2513.4.2022.18

Yasmin, S., & Moniruzzaman, Md. (2024). Forecasting of area, production, and yield of jute in

Bangladesh using Box-Jenkins ARIMA model. Journal of Agriculture and Food Research, 16, 1-14.

https://doi.org/10.1016/j.jafr.2024.101203 DOI: https://doi.org/10.1016/j.jafr.2024.101203

Downloads

Published

2024-09-15

How to Cite

Guzma´n-Anaya, L. (2024). Application of ARIMA Model to Forecast Corn Prices in Mexico. Scientia Et PRAXIS, 4(08), 64–95. https://doi.org/10.55965/setp.4.08.a3

Issue

Section

Scientific Articles