Towards Sustainable Digital Education: A Predictive Model for Preventing Social Media Addiction in University Students.A Predictive Model for Preventing Social Media Addiction in University Students

Authors

DOI:

https://doi.org/10.55965/setp.5.10.a4

Keywords:

social media addiction, educational innovation, predictive model, sustainable development, digital wellbeing, gender, university students, SD3, SDG4

Abstract

Context. The maladaptive use of social media represents a growing public health concern worldwide, particularly affecting young individuals and university settings. In Mexico, prevalence rates among higher education students range from 18% to 42%, highlighting the need to identify predictive factors and develop tailored intervention strategies for this population.

Problem. There is a lack of consensus regarding the moderating role of demographic variables such as age and gender in PSMU - Problematic Social Media Use, challenging the efficacy of interventions based solely on usage time reduction.

Purpose. This study aims to identify the main predictors of social media addiction among Mexican university students using a logistic regression model, focusing on variables such as age, daily usage time, and gender, in alignment with Sustainable Development Goals 3 and 4.

Methodology. A cross-sectional study conducted between January and March 2025 with 705 students from the Universidad Autónoma de Aguascalientes (UAA), Mexico. The validated Bergen Social Media Addiction Scale (BSMAS) was administered (α=0.89; r=0.76 with IAT), and binary logistic regression was performed controlling for gender and academic year.

Theoretical and practical findings. Age demonstrated a protective effect (OR=0.37, p=0.006), reducing the probability of addiction by 63% per additional year. Male gender was associated with higher risk (69.6% vs. 60.1%, p=0.012). Hours of use were not statistically significant. These findings support the I-PACE (Interaction of Person-Affect-Cognition-Execution) model and suggest the need for gender- and academic year-specific interventions.

Originality. Integration of developmental and gender variables into a predictive model applicable to the Mexican university context, employing a process innovation framework (Oslo Manual).

Conclusions and limitations. Age and gender are more robust predictors than usage time. The cross-sectional design limitation underscores the need for longitudinal studies to establish causality.

Downloads

Download data is not yet available.

Author Biography

Francisco Jacobo Murillo-López, Universidad Autónoma de Aguascalientes, Aguascalientes, México

Research Professor at the Profesor investigador Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.

References

Andreassen, C. S. (2015). Online social network site addiction: A comprehensive review. Current Addiction Reports, 2 (2), 175–184. https://doi.org/10.1007/s40429-015-0056-9 DOI: https://doi.org/10.1007/s40429-015-0056-9

Andreassen, C. S., Billieux, J., Griffiths, M. D., Kuss, D. J., Demetrovics, Z., Mazzoni, E., & Pallesen, S. (2016). The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A large-scale cross-sectional study. Psychology of Addictive Behaviors, 30(2), 252–262. https://doi.org/10.1037/adb0000160 DOI: https://doi.org/10.1037/adb0000160

Bányai, F., Zsila, Á., Király, O., Maraz, A., Elekes, Z., Griffiths, M. D., ... & Demetrovics, Z. (2017). Problematic social media use: Results from a large-scale nationally representative adolescent sample. PLOS ONE, 12 (1), e0169839. https://doi.org/10.1371/journal.pone.0169839 DOI: https://doi.org/10.1371/journal.pone.0169839

Brand, M., Wegmann, E., Stark, R., Müller, A., Wölfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience & Biobehavioral Reviews, 104, 1–10. https://doi.org/10.1016/j.neubiorev.2019.06.032 DOI: https://doi.org/10.1016/j.neubiorev.2019.06.032

Canty, A., & Ripley, B. D. (2023). *boot: Bootstrap R (S-Plus) Functions* (Version 1.3-28.1) [Paquete de software R]. https://CRAN.R-project.org/package=boot

Elphinston, R. A., & Noller, P. (2011). Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction. Cyberpsychology, Behavior, and Social Networking, 14 (11), 631–635. https://doi.org/10.1089/cyber.2010.0318 DOI: https://doi.org/10.1089/cyber.2010.0318

Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3ª ed.). Sage.

García-Méndez, J. A., López-Ramírez, F., & Silva-Ortega, M. (2023). Dimensiones de la adicción a redes sociales y su variación por género en universitarios mexicanos: Un análisis de clases latentes. Scientia et PRAXIS, 3 (4), 75–94. https://doi.org/10.55965/setp.3.04.a3

Harrell, F. E. (2023). rms: Regression Modeling Strategies (Version 6.7-1) [Paquete de software R]. https://CRAN.R-project.org/package=rms

Instituto Nacional de Estadística y Geografía. (2023). Estadística de disponibilidad y uso de tecnología de información y comunicación en los hogares (ENDUTIH) 2022. https://www.inegi.org.mx/contenidos/saladeprensa/boletines/2023/ENDUTIH/ENDUTIH2022 .pdf

Kuss, D. J., & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International Journal of Environmental Research and Public Health, 14 (3), 311. https://doi.org/10.3390/ijerph14030311 DOI: https://doi.org/10.3390/ijerph14030311

Marino, C., Gini, G., Vieno, A., & Spada, M. M. (2018). The associations between problematic Facebook use, psychological distress, and well-being among adolescents and young adults: A systematic review and meta-analysis. Journal of Affective Disorders, 226, 274–281. https://doi.org/10.1016/j.jad.2017.10.007 DOI: https://doi.org/10.1016/j.jad.2017.10.007

Organización para la Cooperación y el Desarrollo Económicos & Eurostat. (2018). Manual de Oslo 2018: Guía para la recogida e interpretación de datos sobre innovación (4ª ed.). OECD Publishing. https://doi.org/10.1787/9789264304604-es

Pérez-Díaz, L. M., & González-Ortiz, J. J. (2022). Modelos predictivos y su aplicación en la innovación educativa para el desarrollo sostenible. Scientia et PRAXIS, 2 (4), 89–112. h ttps://doi.org/10.55965/setp.2.04.c

R Core Team. (2023). R: A language and environment for statistical computing (Version 4.3.1) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/

Ramírez-López, A. I., & Sánchez-Gutiérrez, C. (2023). Bienestar digital y uso problemático de redes sociales en jóvenes universitarios: una revisión sistemática. Scientia et PRAXIS, 3 (5), 45–67. https://doi.org/10.55965/setp.3.01.a

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Müller, M. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, 77. https://doi.org/10.1186/1471-2105-12-77 DOI: https://doi.org/10.1186/1471-2105-12-77

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, *48*(2), 1–36. https://doi.org/10.18637/jss.v048.i02 DOI: https://doi.org/10.18637/jss.v048.i02

Ryan, T., Chester, A., Reece, J., & Xenos, S. (2014). The uses and abuses of Facebook: A review of Facebook addiction. Journal of Behavioral Addictions, 3 (3), 133–148. https://doi.org/10.1556/JBA.3.2014.016 DOI: https://doi.org/10.1556/JBA.3.2014.016

Salazar-Fernández, C., Palet, D., Haeger, P. A., & Román Mella, F. (2021). COVID-19 perceived impact and psychological variables as predictors of unhealthy food and alcohol consumption trajectories: The role of gender and living with children as moderators. International Journal of Environmental Research and Public Health, 18 (9), 4542. https://doi.org/10.3390/ijerph18094542 DOI: https://doi.org/10.3390/ijerph18094542

Tang, J. H., Chen, M. C., Yang, C. Y., Chung, T. Y., & Lee, Y. A. (2016). Personality traits, interpersonal relationships, online social support, and Facebook addiction. Telematics and Informatics, 33 (1), 102–108. https://doi.org/10.1016/j.tele.2015.06.003 DOI: https://doi.org/10.1016/j.tele.2015.06.003

Vandenbroucke, J. P., von Elm, E., Altman, D. G., Gøtzsche, P. C., Mulrow, C. D., Pocock, S. J., Poole, C., Schlesselman, J. J., & Egger, M. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Medicine, 4 (10), e297. https://doi.org/10.1371/journal.pmed.0040297 DOI: https://doi.org/10.1371/journal.pmed.0040297

Wegmann, E., Stodt, B., & Brand, M. (2015). Addictive use of social networking sites can be explained by the interaction of Internet use expectancies, Internet literacy, and psychopathological symptoms. Journal of Behavioral Addictions, 4 (3), 155–162. https://doi.org/10.1556/2006.4.2015.021 DOI: https://doi.org/10.1556/2006.4.2015.021

Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. CyberPsychology & Behavior, 1 (3), 237–244. https://doi.org/10.1089/cpb.1998.1.237 DOI: https://doi.org/10.1089/cpb.1998.1.237

Zhang, Y., Leung, L., & Li, S. (2022). A meta-analysis of social media addiction and academic performance. Computers in Human Behavior, 12*, 107105. https://doi.org/10.1016/j.chb.2021.107105 DOI: https://doi.org/10.1016/j.chb.2021.107105

Published

2025-11-15

How to Cite

Murillo-López, F. J. (2025). Towards Sustainable Digital Education: A Predictive Model for Preventing Social Media Addiction in University Students.A Predictive Model for Preventing Social Media Addiction in University Students. Scientia Et PRAXIS, 5(10), 94–125. https://doi.org/10.55965/setp.5.10.a4

Issue

Section

Scientific Articles