La Toma de Decisiones del Consumidor en Línea como Estrategias de Innovación por Mercadotecnia para la Nueva Normalidad
DOI:
https://doi.org/10.55965/setp.1.02.a1Palabras clave:
toma de decisiones del consumidor en línea, estrategias de innovación; mercadotecnia, nueva normalidadResumen
Objetivo. Esta investigación contribuye a la teoría del estilo de toma de decisiones del consumidor (CDMS) en línea (eCDMS) para descubir nuevas orientaciones y segmentaciones de los msmos y generar estrategias de innovación de marketing para las empresas, en la nueva normalidad.
Metodología. Se basa en una revisión de la literatura diseñando un modelo y un cuestionario aplicado a 400 consumidores mexicanos en línea (Mayo-Agosto de 2021). El conjunto de datos se analiza bajo el modelado de ecuaciones estructurales basado en covarianza (CB-SEM), elanálisis de conglomerados y el métodos multivariados ANOVA de un factor.
Resultados. Se obtiene un modelo empírico con 9 factores, 24 indicadores como nuevas orientaciones de estilos de toma de decisiones del cliente online (orientación eCDMS), siendo la calidad, la marca y la experiencia del cliente los más relevantes. Además, se obtuvo cuatro nuevos grupos de clientes en línea (segmentación eCDMS) a los que denominamos: seguidores de marketing, buscadores de precios, compradores de conveniencia, encargados de la ética y la reputación.
La originalidad se basa en una propuesta marco, basada en consumidores en línea después de la pandemia COVID-19, como primeros hallazgs para conformar una teoría de toma de decisiones del consumidor en línea (eCDMS).
Descargas
Citas
Bagozzi, R.P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16 (1), 74-94. DOI: https://doi.org/10.1007/BF02723327
Bagozzi, R., et al., 2000. Cultural and Situational Contingencies and the Theory of Reasoned Action: Application to Fast Food Restaurant Consumption. Journal of Consumer Psychology, 92, (2) 97-106. DOI: https://doi.org/10.1207/15327660051044187
Bandura, A, (1997), Self-Efficacy: The Exercise of Control. W.H. Freeman.
Bleier, A., Harmeling, C.M. and Palmatier, R.W. (2019). Creating Effective Online Customer Experiences. Journal of Marketing, 83 (2), 98-119. Retrieved from: https://doi.org/10.1177/0022242918809930 DOI: https://doi.org/10.1177/0022242918809930
Bullini-Orlandi, L. and Pierce, P. (2020).Analysis or intuition? Reframing the decision-making styles debate in technological settings. Management Decision, 58 (1), 129-145. Retrieved from: https://doi.org/10.1108/MD-10-2017-1030 DOI: https://doi.org/10.1108/MD-10-2017-1030
Byrne, B. M. (2006). Structural Equation Modeling With EQS, basic concepts, applications, and programming. London: LEA Publishers.
Cabrera, M. (2020). Latinoamérica da un salto al futuro en adopción del e-commerce tras COVID-19. ISDI Digital Talent. Retrieved from: https://www.isdi.education/es/isdigital-now-mexico/blog/ecommerce/latinoamerica-da-un-salto-al-futuro-en-adopcion-del-e-commerce
Charm, T., Coggins, B., Robinson, K., and Wilkie, J. (2020). The great consumer shift: Ten charts that show how US shopping behavior is changing. McKinsey & Co.Retrieved from: https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-great-consumer-shift-ten-charts-that-show-how-us-shopping-behavior-is-changing
Chen, Z,F. and Cheng, Y. (2018). Consumer response to fake news about brands on social media: the effects of self-efficacy, media trust, and persuasion knowledge on brand trust. Journal of Product & Brand Management, 1-12DOI 10.1108/JPBM-12-2018-2145
Chi-Hsun, L. , and Jyh-Jeng, W. (2017).Consumer online flow experience: The relationship between utilitarian and hedonic. Industrial Management & Data Systems,1-44. DOI:10.1108/IMDS-11-2016-0500 DOI: https://doi.org/10.1108/IMDS-11-2016-0500
Deloitte (2021). Digital Consumer Trends en México 2020. Deloitte Consulting Group S.C. Retrieved from:
https://www2.deloitte.com/content/dam/Deloitte/mx/Documents/technology/2021/DigitalCT_202
Koscierzynski, M. (2020). The Modern Consumer | Decision Making Journey. Deloitte Development LLC. Retrieved from: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/CMO/us-modern-consumer-decision-making-journey.pdf
Fishbein, M., andAjzen, I. (2011), Predicting and changing behavior: The reasoned action approach. New York: Psychology Press.
Fornell, Cl., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18 (2), 39-50. DOI: https://doi.org/10.1177/002224378101800104
Francis, T. and Hoefel, F. (2018). True Gen: Generation Z and its implications for companies. McKinsey & Co. Retrieved from: https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/true-gen-generation-z-and-its-implications-for-companies
Hair, J. F., Jr., Black, W.C., Babin, B.J., and Anderson, R.E. (2019), Multivariate Data Analysis. 8th Ed. China: Cengage.
Howard, J. A. and Jagdish N. Sheth, (1969), The Theory of Buyer Behavior, New York: Wiley.
Karimi, S., Holland, Ch.P., and Papamichail, K.N. (2018). The impact of consumer archetypes on online purchase decision-making processes and outcomes: A behavioural process perspective. Journal of Business Research, 91, 1-12. https://doi.org/10.1016/j.jbusres.2018.05.038 DOI: https://doi.org/10.1016/j.jbusres.2018.05.038
Katawetawaraks, Ch., and Lu-Wang Ch. (2011). Online Shopper Behavior: Influences of Online Shopping Decision. Asian Journal of Business Research, 1 (2), 66-74. https://swsu.ru/sbornik-statey/pdf/Online%20Shopper%20Behavior%20Influences.pdf DOI: https://doi.org/10.14707/ajbr.110012
Koch, J., Frommeyer, B., and Schewe, G. (2020). Online Shopping Motives during the COVID-19 Pandemic-Lessons from the Crisis. Sustainability, 12, 2-20. doi:10.3390/su122410247 DOI: https://doi.org/10.3390/su122410247
Kohli, S., Timelin, B., Fabius, V., and Moulvad Veranen, S. (2020). How COVID-19 is changing consumer behavior –now and forever. McKinsey & Co. Retrieved from: https://www.mckinsey.com/~/media/McKinsey/Industries/Retail/Our%20Insights/How%20COVID%2019%20is%20changing%20consumer%20behavior%20now%20and%20forever/How-COVID-19-is-changing-consumer-behaviornow-and-forever.pdf
Lai, I.S., Huang, Y.F., Siang, J.H., and Weng, M.W. (2020). Evaluation of Key Success Factors for Web Design in Taiwan's Bike Case Study. Journal of Asian Finance Economics And Business, 7 (11), 927-937.DOI: 10.13106/jafeb.2020. DOI: https://doi.org/10.13106/jafeb.2020.vol7.no11.927
Liu, Q.H. and Zhang, F.G. (2019). Study on the Influencing Factors of Mobile Users' Impulse Purchase Behavior in a Large Online Promotion Activity. Journal of Electronic Commerce in Organizations, 17,(2), 88-101. DOI: 10.4018/JECO.2019040108 DOI: https://doi.org/10.4018/JECO.2019040108
Madahi, A., Sukati, I., Mazhari, M.Y., and Rashid, W.N. (2012). Consumer Decision Making Styles amongst Young Generation in Malaysia. European Journal of Social Sciences, 30 (2), 263-275. Retrieved from:
https://www.europeanjournalofsocialsciences.com/issues/EJSS_30_2.html
Maggioni, I., Sands, S., Kachoui, R., and Tsarenko, Y. (2019). Shopping for well-being: The role of consumer decision-making styles. Journal of Business Research, 105. 21-32. Retrieved from: https://doi.org/10.1016/j.jbusres.2019.07.040 DOI: https://doi.org/10.1016/j.jbusres.2019.07.040
Mejía-Trejo, J. (2019a). Diseño de Cuestionarios y Creación de Escalas.Uso del EQS enn las Ciencias Económico-Administrativas. BUK: México. Retrieved from: https://buk.com.mx/9786075384672/description DOI: https://doi.org/10.55965/abib.9786075471846.2018a
Mejía-Trejo, J. (2019b). Técnicas Interdependientes con SPSS. BUK: México. Retrieved from: https://buk.com.mx/9786079847197/description
Mejía-Trejo, J. (2019c). Técnicas Dependientes con SPSS. BUK: México. Retrieved from: https://buk.com.mx/9786079878207/description
Mejía-Trejo, J. (2021). Digital Marketing Model Innovation and Generation Z as Consumer Decision-Making Style, Making predictions with an Artificial Neural Network, in México, Contaduría y Administración, 66, (4), 1-28. Retrieved from: http://www.cya.unam.mx/index.php/cya/article/view/3258/0
Mohsenin, S., Sharifsamet, S., Esfidani, M.R. and Skoufa, L.A. (2018). Customer decision-making styles as a tool for segmenting digital products market in Iran. Journal of Islamic Marketing, 9 (3), 560-577. Retrieved from: https://doi.org/10.1108/JIMA-04-2017-0041 DOI: https://doi.org/10.1108/JIMA-04-2017-0041
Nawaz, Z., Zhang, J., Mansoor, R., Ahmad, A., and Bangash, I.A. (2019). Decision Making-Styles of Young Pakistani Consumers: A Study of Consumer Style Inventory (CSI). International Journal of Information, Business and Management, 11 (4), 50-60.
Nunnally, J. C. and Bernstein, I. H. (1994).Psychometric Theory. New York: McGraw-Hill
Osterwalder, A.,and Pigneur, Y.(2010). Business Model Generation. A Handbook for Visionaries, Game Changers, and Challengers. USA: John Wiley & Sons, Inc.
Ozturk, A. (2020). Changes in Consumer Behavior after COVID-19 Pandemic. In Yetgin, M.A., Kurter, O., and Temizkan, V. (2020). Inferences from the Covid-19 Pandemic. A Multidisciplinary Research, 137-154.
Saleh, M., Alhosseini, S.E., and Slambolchi, A. (2017). A Review of Consumer Decision-Making Styles: Existing Styles and Proposed Additional Styles. International Journal of Research in IT, Management and Engineering, 7 (1), 33-44.
Seth, J. (2020). Impact of Covid-19 on consumer behavior: Will the old habits return or die?. Journal of Business Research, 117, 280-283. Retrieved from: https://doi.org/10.1016/j.jbusres.2020.05.059 DOI: https://doi.org/10.1016/j.jbusres.2020.05.059
Solomon, M. et al. (2006). Consumer Behaviour: A European Perspective. 3rd ed. Harlow: Prentice.
Tarnanidis, T., Owususu.Frimpong, N., Nwankwo, S., and Omar, M. (2014). A confirmatory factor analysis of consumer styles inventory: Evidence from Greece. Journal of Retailing and Consumer Services, 22, 2-14. Retrieved from: http://dx.doi.org/10.1016/j.jretconser.2014.07.001i DOI: https://doi.org/10.1016/j.jretconser.2014.07.001
Thangavel, P., Pathak, P. and Chandra, B. (2019). Consumer Decision-making Style of Gen Z: A Generational Cohort Analysis, Global Business Review, 1 (19), 1-19. DOI:10.1177/0972150919880128 DOI: https://doi.org/10.1177/0972150919880128
Sproles, G.B., and Kendall, E.L., (1986). A methodology for profiling consumers’ decision making styles. Journal of Consumer Affairs, 20, 267–279. DOI: https://doi.org/10.1111/j.1745-6606.1986.tb00382.x
Sudbury-Riley, L., Hess, A., FitzPatrick, M., and Schulz, P.J. (2018). Online Health Information and Patient Decision Making Styles: A new Segment o Patient. UK: Liverpool Repository, Liverpool University. DOI: https://doi.org/10.5465/AMBPP.2018.13350abstract
B., and Wood, W.(2006). Interventions to Break and Create Consumer Habits. Journal of Public Policy & Marketing, 25 (1), 90-103. DOI: 10.1509/jppm.25.1.90 DOI: https://doi.org/10.1509/jppm.25.1.90
Yildiz, A. (2020), The Effect of Utilitarian Motivations in Online Consumption Behavior. Journal of Critical Reviews, 7 (13), 981-988. doi:10.31838/jcr.07.13.163 DOI: https://doi.org/10.31838/jcr.07.13.163
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.